Mathematical Logic

Logical Equivalence

Definition 12.20

Any two compound statements A and B are said to be logically equivalent or simply equivalent if the columns corresponding to A and B in the truth table have identical truth valuesThe logical equivalence of the statements A and B is denoted by A  B or A  B .

From the definition, it is clear that, if A and B are logically equivalent, then A  B must be tautology.

 

Some Laws of Equivalence

 

1. Idempotent Laws

(i)  p  p

(ii)  p  p .

Proof


In the above truth table for both p , p  p and p  p have the same truth values. Hence  p  p and p  p  p .

 

2. Commutative Laws

(i) p  q  q  p

(ii) p  q  q  p .

Proof (i)


The columns corresponding to p  q and q  p are identical. Hence p  q  q  p .

Similarly (ii) p  q  q  p can be proved.

 

3. Associative Laws

(i) p  ( q  r )  ( p  q )  r (ii) p  ( q  r )  ( p  q )  r .

Proof

The truth table required for proving the associative law is given below.


The columns corresponding to ( p  q )  r and p  ( q  r ) are identical.

Hence p  ( q  r )  ( p  q )  r .

Similarly, (ii)  ( q  r )  ( p  q )  r can be proved.

 

4. Distributive Laws

(i) p  ( q  r )  ( p  q )  ( p  r)

(ii) p  ( q  r )  ( p  q )  ( p  r)

Proof (i)


The columns corresponding to p  ( q  r) and ( p  q )  ( p  r) are identical. Hence  ( q  r )  ( p  q )  ( p  r) .

Similarly (ii) p  ( q  r )  ( p  q )  ( p  r) can be proved.

 

5. Identity Laws

(i) p   and p   p

(ii) p  ≡ p and p  F ≡ F


(i) The entries in the columns corresponding to p  T and T are identical and hence they are equivalent. The entries in the columns corresponding to p  F and p are identical and hence they are equivalent.

Dually

(ii) p  T ≡ p and p  F ≡ F can be proved.

 

6. Complement Laws

(i) p  ¬ p  T and p  ¬ p  F (ii) ¬T ≡ F and ¬F ≡ T

Proof


(i) The entries in the columns corresponding to p  ¬ p and T are identical and hence they are equivalent. The entries in the columns corresponding to p  ¬ p and F are identical and hence they are equivalent.

(ii) The entries in the columns corresponding to ¬T and F are identical and hence they are equivalent. The entries in the columns corresponding to ¬F and T are identical and hence they are equivalent.

 

7. Involution Law or Double Negation Law

 ¬(¬ p) ≡ p

Proof


The entries in the columns corresponding to ¬ ( ¬p) and p are identical and hence they are equivalent.

 

8. de Morgan’s Laws

(i) ¬ ( p  q)  ¬ p  ¬q

(ii) ¬ ( p  q) ≡ ¬p  ¬q

Proof of (i)


The entries in the columns corresponding to ¬ ( p  q ) and ¬ p  ¬q are identical and hence they are equivalent. Therefore ¬ ( p  q)  ¬ p  ¬q . Dually (ii) ¬ ( p  q) ≡ ¬p  ¬q can be proved.

 

9. Absorption Laws

(i) p  ( p  q )  p

(ii) p  ( p  q )  p


(i) The entries in the columns corresponding to p  ( p  q) and p are identical and hence they are equivalent.

(ii) The entries in the columns corresponding to p  ( p  q) and p are identical and hence they are equivalent.

 

Example 12.17

Establish the equivalence property: p  q ≡ ¬ p  q

Solution


The entries in the columns corresponding to p  q and ¬ p  q are identical and hence they are equivalent.

 

Example 12.18

Establish the equivalence property connecting the bi-conditional with conditional:

 p↔ q ≡ ( p → q )  (q → p)

Solution


The entries in the columns corresponding to  q and ( p → q )  ( q → p) are identical and hence they are equivalent.

 

Example 12.19

Using the equivalence property, show that p  q  ( p  q )  ( ¬ p ∧ ¬q) .

Solution

It can be obtained by using examples 12.15 and 12.16 that

 p  q  ( ¬ p  q)  ( ¬ p)

... (1)

≡ (¬ p  q)  ( p ¬q) (by Commutative Law)

... (2)

  ( ¬ p  ( p  ¬q ))  ( q  ( p  ¬q)) (by Distributive Law)

  ( ¬ p  p ( ¬p  ¬q ( q  p ( q  ¬q) (by Distributive Law)

≡ F  ( ¬p  ¬q ( q  p F; (by Complement Law)

  ( ¬ p  ¬ q )  ( q  p) ; (by Identity Law)

  ( p  q ) (¬ p ¬q) ; (by Commutative Law)

Finally (1) becomes p  ≡ p  q ) (¬ p ¬q) .

Comments